2,098 research outputs found

    Orienting coupled quantum rotors by ultrashort laser pulses

    Get PDF
    We point out that the non-adiabatic orientation of quantum rotors, produced by ultrashort laser pulses, is remarkably enhanced by introducing dipolar interaction between the rotors. This enhanced orientation of quantum rotors is in contrast with the behavior of classical paired rotors, in which dipolar interactions prevent the orientation of the rotors. We demonstrate also that a specially designed sequence of pulses can most efficiently enhances the orientation of quantum paired rotors.Comment: 7 pages, 5 figures, to appear in Phys. Rev.

    Association between generation gap in interest, familiarity and application of information and communication technology

    Get PDF
    Given the introduction of information and communication technology and its rapid progress in every society, its use and application is different between various social institutions in that it demonstrates the difference between previous and present generation. Hence, the research was conducted in the school year 2012-2013 with the aim of applying information technology among female high school students and their mothers in Gorgan Province. The research method is a descriptive-analytical method; using a cluster sampling, of 34 female schools 8 schools were randomly chosen and 260 students were included in the study out of 1625 students. Using collected questionnaires and information obtained from independent t-test the results indicated that there was a significant difference between the mean of familiarity, interest and mothers' and their children's use of information technology. © Medwell Journals, 2016

    Toward a unified light curve model for multi-wavelength observations of V1974 Cygni (Nova Cygni 1992)

    Full text link
    We present a unified model for optical, ultraviolet (UV), and X-ray light curves of V1974 Cygni (Nova Cygni 1992). Based on an optically thick wind model of nova outbursts, we have calculated light curves and searched for the best fit model that is consistent with optical, UV, and X-ray observations. Our best fit model is a white dwarf (WD) of mass 1.05 M_\sun with a chemical composition of X=0.46, C+N+O=0.15, and Ne = 0.05 by mass weight. Both supersoft X-ray and continuum UV 1455 \AA light curves are well reproduced. Supersoft X-rays emerged on day ~ 250 after outburst, which is naturally explained by our model: our optically thick winds cease on day 245 and supersoft X-rays emerge from self-absorption by the winds. The X-ray flux keeps a constant peak value for ~ 300 days followed by a quick decay on day ~ 600. The duration of X-ray flat peak is well reproduced by a steady hydrogen shell burning on the WD. Optical light curve is also explained by the same model if we introduce free-free emission from optically thin ejecta. A t^{-1.5} slope of the observed optical and infrared fluxes is very close to the slope of our modeled free-free light curve during the optically thick wind phase. Once the wind stops, optical and infrared fluxes should follow a t^{-3} slope, derived from a constant mass of expanding ejecta. An abrupt transition from a t^{-1.5} slope to a t^{-3} slope at day ~ 200 is naturally explained by the change from the wind phase to the post-wind phase on day ~ 200. The development of hard X-ray flux is also reasonably understood as shock-origin between the wind and the companion star. The distance to V1974 Cyg is estimated to be ~ 1.7 kpc with E(B-V)= 0.32 from the light curve fitting for the continuum UV 1455 \AA.Comment: 8 pages, 4 figures, to appear in the Astrophysical Journa

    Crystal Structures of [Fe]-Hydrogenase from Methanolacinia paynteri Suggest a Path of the FeGP-Cofactor Incorporation Process

    Get PDF
    [Fe]-hydrogenase (Hmd) catalyzes the reversible heterolytic cleavage of H-2, and hydride transfer to methenyl-tetrahydromethanopterin (methenyl-H4MPT+). The iron-guanylylpyridinol (FeGP) cofactor, the prosthetic group of Hmd, can be extracted from the holoenzyme and inserted back into the protein. Here, we report the crystal structure of an asymmetric homodimer of Hmd fromMethanolacinia paynteri(pHmd), which was composed of one monomer in the open conformation with the FeGP cofactor (holo-form) and a second monomer in the closed conformation without the cofactor (apo-form). In addition, we report the symmetric pHmd-homodimer structure in complex with guanosine monophosphate (GMP) or guanylylpyridinol (GP), in which each ligand was bound to the protein, where the GMP moiety of the FeGP-cofactor is bound in the holo-form. Binding of GMP and GP modified the local protein structure but did not induce the open conformation. The amino-group of the Lys150 appears to interact with the 2-hydroxy group of pyridinol ring in the pHmd-GP complex, which is not the case in the structure of the pHmd-FeGP complex. Lys150Ala mutation decreased the reconstitution rate of the active enzyme with the FeGP cofactor at the physiological pH. These results suggest that Lys150 might be involved in the FeGP-cofactor incorporation into the Hmd protein in vivo

    Interacting quantum rotors in oxygen-doped germanium

    Get PDF
    We investigate the interaction effect between oxygen impurities in crystalline germanium on the basis of a quantum rotor model. The dipolar interaction of nearby oxygen impurities engenders non-trivial low-lying excitations, giving rise to anomalous behaviors for oxygen-doped germanium (Ge:O) below a few degrees Kelvin. In particular, it is theoretically predicted that Ge:O samples with oxygen-concentration of 101718^{17-18}cm3^{-3} show (i) power-law specific heats below 0.1 K, and (ii) a peculiar hump in dielectric susceptibilities around 1 K. We present an interpretation for the power-law specific heats, which is based on the picture of local double-well potentials randomly distributed in Ge:O samples.Comment: 13 pages, 11 figures; to be published in Phys. Rev.

    Dynamical Friction in a Gaseous Medium

    Get PDF
    Using time-dependent linear perturbation theory, we evaluate the dynamical friction force on a massive perturber M_p traveling at velocity V through a uniform gaseous medium of density rho_0 and sound speed c_s. This drag force acts in the direction -\hat V, and arises from the gravitational attraction between the perturber and its wake in the ambient medium. For supersonic motion (M=V/c_s>1), the enhanced-density wake is confined to the Mach cone trailing the perturber; for subsonic motion (M<1), the wake is confined to a sphere of radius c_s t centered a distance V t behind the perturber. Inside the wake, surfaces of constant density are hyperboloids or oblate spheroids for supersonic or subsonic perturbers, respectively, with the density maximal nearest the perturber. The dynamical drag force has the form F_df= - I 4\pi (G M_p)^2\rho_0/V^2. We evaluate I analytically; its limits are I\to M^3/3 for M>1. We compare our results to the Chandrasekhar formula for dynamical friction in a collisionless medium, noting that the gaseous drag is generally more efficient when M>1 but less efficient when M<1. To allow simple estimates of orbit evolution in a gaseous protogalaxy or proto-star cluster, we use our formulae to evaluate the decay times of a (supersonic) perturber on a near-circular orbit in an isothermal \rho\propto r^{-2} halo, and of a (subsonic) perturber on a near-circular orbit in a constant-density core. We also mention the relevance of our calculations to protoplanet migration in a circumstellar nebula.Comment: 17 pages, 5 postscript figures, to appear in ApJ 3/1/9

    Manipulating the Tomonaga-Luttinger exponent by electric field modulation

    Full text link
    We establish a theoretical framework for artificial control of the power-law singularities in Tomonaga-Luttinger liquid states. The exponent governing the power-law behaviors is found to increase significantly with an increase in the amplitude of the periodic electric field modulation applied externally to the system. This field-induced shift in the exponent indicates the tunability of the transport properties of quasi-one-dimensional electron systems.Comment: 7 pages, 3 figure

    Periodic boundary conditions on the pseudosphere

    Full text link
    We provide a framework to build periodic boundary conditions on the pseudosphere (or hyperbolic plane), the infinite two-dimensional Riemannian space of constant negative curvature. Starting from the common case of periodic boundary conditions in the Euclidean plane, we introduce all the needed mathematical notions and sketch a classification of periodic boundary conditions on the hyperbolic plane. We stress the possible applications in statistical mechanics for studying the bulk behavior of physical systems and we illustrate how to implement such periodic boundary conditions in two examples, the dynamics of particles on the pseudosphere and the study of classical spins on hyperbolic lattices.Comment: 30 pages, minor corrections, accepted to J. Phys.

    Nature of a Strongly-Lensed Submillimeter Galaxy SMM J14011+0252

    Full text link
    We have carried out near-infrared JHK spectroscopy of a gravitationally lensed submillimeter galaxy SMM J14011+0252 at z=2.565, using OHS and CISCO on the Subaru telescope. This object consists of two optical components, J1 and J2, which are lensed by the cluster Abell 1835. J1 suffers additional strong lensing by a foreground galaxy at z=0.25 in the cluster. The rest-optical H-alpha, H-beta, and [O II]3727 lines are detected in both J1 and J2, and [N II]6548,6583 lines are also detected in J1. A diagnosis of emission-line ratios shows that the excitation source of J1 is stellar origin, consistent with previous X-ray observations. The continua of J1 and J2 show breaks at rest 4000A, indicating relatively young age. Combined with optical photometry, we have carried out model spectrum fitting of J2 and find that it is a very young (~50 Myr) galaxy of rather small mass (~10e8 M_sol) which suffers some amount of dust extinction. A new gravitational lensing model is constructed to assess both magnification factor and contamination from the lensing galaxy of the component J1, using HST-F702W image. We have found that J1 suffers strong lensing with magnification of ~30, and its stellar mass is estimated to be < 10e9 M_sol. These results suggest that SMM J14011+0252 is a major merger system at high redshift that undergoes intense star formation, but not a formation site of a giant elliptical. Still having plenty of gas, it will transform most of the gas into stars and will evolve into a galaxy of < 10e10 M_sol. Therefore, this system is possibly an ancestor of a less massive galaxy such as a mid-sized elliptical or a spiral at the present.Comment: 21 pages, 11 figures. Accepted for publication in Astronomical Journa

    Analisis Fasies dan Permodelan Sikuen Stratigrafi Batuan Karbonat Lintasan Korido, Formasi Wainukendi, Kabupaten Supiori, Papua

    Full text link
    Korido is located in Supiori District , Papua , Indonesia . This area is in the north of the Central Range and included in the North Irian Basin which is the fore arc basin (Mc Adoo &amp; J.C. Haebig, 1999). Own research area based on geology map created by Masria et al ( 1981) composed by Wainukendi Formation which is composed predominantly by carbonate sedimentary rocks .The purpose of this study is to determine the pattern of lithology and lithological boundaries were obtained from measured stratigraphy along the trajectory of research which is then integrated with the micro facies analysis and facies zone were obtained by petrographic analysis to determine the depositional environment and depositional processes that occur in Wainukendi Formation. More over, the relative age determination is also done based on the analysis of large benthic foraminifera so the deposition process can be integrated with relative age . The ultimate goal of this research is to integrate field data, micro facies analysis results and deposition process analysis results to create a model of sedimentation, determining stratigraphic marker, and the determines system tract that develops in Wainukendi Formation in the study area .The method used in this research is geological mapping focused on stratigraphy subjects in Korido area to get lithostratigraphy sequence, platform type, sedimentation processes, and laboratory analysis include petrographic analysis to determine micro facies and facies zone and paleontological analysis to determine the relative age which then integrated to obtain stratigraphic marker and systems tract that develops in Wainukendi Formation. From the analysis of platform type showed the type of platform existing in this area is rimmed shelf type which is then used as a reference in micro facies analysis according to Wilson (1975) to obtain 4 facies zone that exist in this study area is reef platform margin , slope , toe of slope apron and deep shelf . Based on the analysis of the deposition process obtained 3 cycles of sedimentation that occurred from Wainukendi Formation . From the results of this analysis are used in determining the stratigraphic sequence to obtain stacking patterns that evolve based sequence boundary and its systems tract is composed of LST - TS - MFS - TST - HST so that obtain a full cycle changes in accommodation space and sediment supply where there is an increase in accommodation space which was offset by an increase in the supply of sediment in LST phase is characterized by progradation and agradation, an increase in the supply of sediment is lower than the increase in accomodation space in TST phase is characterized by retrogradation, and lastly, a decrease in accommodation space while sediment supply rate is still high in HST phase characterized by progradation
    corecore